Shallow2Deep: Restraining Neural Networks Opacity Through Neural Architecture Search

نویسندگان

چکیده

Recently, the Deep Learning (DL) research community has focused on developing efficient and highly performing Neural Networks (NN). Meanwhile, eXplainable AI (XAI) making Machine (ML) methods interpretable transparent, seeking explainability. This work is a preliminary study applicability of Architecture Search (NAS) (a sub-field DL looking for automatic design NN structures) in XAI. We propose Shallow2Deep, an evolutionary NAS algorithm that exploits local variability to restrain opacity DL-systems through architectures simplification. Shallow2Deep effectively reduces complexity – therefore their while reaching state-of-the-art performances. Unlike its competitors, promotes localised structures NN, helping reduce opacity. The proposed analyses role design, presenting experimental results show how this feature actually desirable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Progressive Neural Architecture Search

We propose a method for learning CNN structures that is more efficient than previous approaches: instead of using reinforcement learning (RL) or genetic algorithms (GA), we use a sequential model-based optimization (SMBO) strategy, in which we search for architectures in order of increasing complexity, while simultaneously learning a surrogate function to guide the search, similar to A* search....

متن کامل

Differentiable Neural Network Architecture Search

The successes of deep learning in recent years has been fueled by the development of innovative new neural network architectures. However, the design of a neural network architecture remains a difficult problem, requiring significant human expertise as well as computational resources. In this paper, we propose a method for transforming a discrete neural network architecture space into a continu...

متن کامل

Search-Convolutional Neural Networks

We present a new deterministic relational model derived from convolutional neural networks. Search-Convolutional Neural Networks (SCNNs) extend the notion of convolution to graph search to construct a rich latent representation that extracts local behavior from general graph-structured data. Unlike other neural network models that take graph-structured data as input, SCNNs have a parameterizati...

متن کامل

Simple And Efficient Architecture Search for Convolutional Neural Networks

Neural networks have recently had a lot of success for many tasks. However, neural network architectures that perform well are still typically designed manually by experts in a cumbersome trial-and-error process. We propose a new method to automatically search for well-performing CNN architectures based on a simple hill climbing procedure whose operators apply network morphisms, followed by sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-82017-6_5